Phasor-based single molecule localization in three dimensions (pSMLM-3D)

pSMLM-3D is a fast and model-free 2D and 3D single-molecule localization algorithm that allows more than 3 × 106 localizations per second to be calculated on a standard multi-core central processing unit with localization accuracies in line with the most accurate algorithms currently available. Our algorithm converts the region of interest around a point spread function to two phase vectors (phasors) by calculating the first Fourier coefficients in both the x- and y-direction. The angles of these phasors are used to localize the center of the single fluorescent emitter, and the ratio of the magnitudes of the two phasors is a measure for astigmatism, which can be used to obtain depth information (z-direction). Our approach can be used both as a stand-alone algorithm for maximizing localization speed and as a first estimator for more time consuming iterative algorithms.

Read more about pSMLM-3D here, or start using it directly by getting the pSMLM-3D ThunderSTORM plugin.

Fig 1: Comparison of computation speed (A) and localization accuracy (B) of pSMLM-3D with other popular localization algorithms.